If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n-5200=0
a = 1; b = 1; c = -5200;
Δ = b2-4ac
Δ = 12-4·1·(-5200)
Δ = 20801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{20801}}{2*1}=\frac{-1-\sqrt{20801}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{20801}}{2*1}=\frac{-1+\sqrt{20801}}{2} $
| 3x-40+×=180 | | 23=x-5*4 | | x-5*4=23 | | x-5•4=23 | | 2y+((150-y)/2)=195 | | 23=x-5•4 | | 2(x+10)-5+3(3-x)=10 | | 13x+2=65+4× | | 15+8b=71 | | 18+9k=73 | | 3(2x+8)=5x-1 | | -2(6x+1)-3=4(2x+1)+4x | | 3(x-1)^2-2=7 | | 3(x-1)2-2=7 | | 2x/5+0,5=4 | | D°2-2d+4=0 | | (3x-2)(x+1)=3x²-5 | | 3m+1.8=16.8 | | 4+6x=8x–6 | | 0/2x=0 | | 3n+7n=11 | | 24x=63x | | -5+7x=9x+13 | | X²-13x+140=0 | | 10+2a=-18a= | | 3x+5=3x+4 | | 8x(3+4x)=11(8x-14) | | 27+2=5x | | 22x+76=7x+91 | | 1/2x+2/4x=-5-35 | | 5x-12=16+3x | | 5x+ 17 = 62 |